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• Tools are being developed for predicting the durability 
and reliability of SOFC materials and components.

• The integration of mechanical property data with life 
prediction models requires the definition of a reference 
state of stress and understanding how stresses and 
strength evolve with time and operating conditions.

Background
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Background

temperature gradients 
and gas pressure 
induce additional 

stresses 

assembly stresses

conditioning stresses 
(e.g.- H2 reduction)

residual stresses
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• Tools are being developed for predicting the durability 
and reliability of SOFC materials and components.

• The integration of mechanical property data with life 
prediction models requires the definition of a reference 
state of stress and understanding how stresses and 
strength evolve with time and operating conditions.

• The objective of this project is to determine the state of 
residual stresses in a NiO-YSZ/YSZ bilayer before and 
after reduction in H2.

Background
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NiO-YSZ

YSZ

10
 µ

m

500 µm

NiO-YSZ/YSZ bilayer

50 mm X 50 mm X 510 µm
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Curvature of NiO-YSZ/YSZ bilayer: optical profilometry

collaboration with John Lannutti
Ohio State University

250 µm

-589 µm

50 mm

50 mm
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• 5 mm x 5 mm bi-layers of NiO-YSZ/YSZ
• 10 µm-thick YSZ layer
• scans between 139° and 142° 2θ

• 20°C, 400°C, 600°C, 800°C and 900°C
• Air

High-temperature 
Diffractometer

Residual Stresses in NiO-YSZ/YSZ bilayer

• 5 mm x 5 mm bi-layers of Ni-YSZ/YSZ 
(after reduction at 800°C using gas 
mixture of 4%H2 and 96% Ar)

• 10 µm-thick YSZ layer
• scans between 139° and 142° 2θ

• 20°C, 400°C, 600°C, 800°C and 900°C
• Ar
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Residual Stresses in NiO-YSZ/YSZ bilayer

A B
I

2Θ

A B

•Strain/stress (applied or residual) changes the interplanar spacing Θ peak shift

Peak shift is converted into strain

• Bragg’s Law 
λ = 2 d sinθ

where λ = wavelength
d =  interplanar spacing
2θ =  diffraction peak position

• Strain, ε = (dB - dA)/dA
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Residual Stresses in NiO-YSZ/YSZ bilayer
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ψ = 0 ° ψ = 45 °

Residual Stresses in NiO-YSZ/YSZ bilayer
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• Sample tilting is 
required for 
accurate strain 
measurement with 
x-rays

• Peak position as a 
function of tilt angle, 
ψ

• Slope of d 
(interplanar spacing) 
vs. sin2ψ is used to 
calculate strain.
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Residual Stresses in NiO-YSZ/YSZ bilayer

σx = σy

in-plane biaxial stress (MPa)
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400°C

Residual Stresses in NiO-YSZ/YSZ bilayer

σx = σy

in-plane biaxial stress (MPa)
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600°C

Residual Stresses in NiO-YSZ/YSZ bilayer

σx = σy

in-plane biaxial stress (MPa)
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800°C

Residual Stresses in NiO-YSZ/YSZ bilayer

in-plane biaxial stress (MPa)
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Implications
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• Large residual compressive stress in zirconia layer at 
room temperature.

• The magnitude of residual stresses decreases linearly 
with temperature.

• The magnitude of residual stresses in both zirconia 
and Ni-YSZ layers decreases after NiO-YSZ reduction 
in H2.

• The zero-stress temperature was found to be lower 
than the sintering temperature.

• Model predictions are consistent with curvature 
measurements and X-ray diffraction determined 
values.

Summary
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Fracture Toughness
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Fracture Toughness

Precrack
Load, P Specimen

t

W

Wm

Notch

Double Torsion

( ) [ ])2/(exp)/(4.2+)/(26.11=,
+13

=
2/1

4 tWπWtWtξ
ξWt
ν

PWK mI --

P-maximum load, ν – Poisson’s ratio
Precracked @ 0.02 mm/min and tested @ 1 mm/min
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Fracture Toughness
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Fracture toughness can be 
expressed using the following 
relationship: 

)'pbexp(KK KICIC -0=

3.03
±0.36 

2.51
±0.83 

bK

7.52
±0.93 

2.54
±0.38 

KIC0
MPam1/2 

Ni-YSZNiO-YSZ

Ni

Fracture Toughness increases 
due to the formation of Ni 
ligaments as a result of H2
reduction.
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Interfacial Fracture Toughness
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Interfacial Fracture Toughness

Notches machined 
with laser beam
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Interfacial Fracture Toughness

Notches machined 
with laser beam
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Interfacial Fracture Toughness

Notches machined with 
diamond blade
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• Work in progress to optimize sample preparation.
• Tests will be carried out under a microscope or using 

a special test fixture inside an SEM.
• Collaboration with J. Qu et al. (Ga. Tech)

Interfacial Fracture Toughness
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A study to determine the effect of porosity, 
temperature and test specimen thickness on the 
elastic properties, strength, fracture toughness 
and thermophysical properties of NiO-YSZ, Ni-

YSZ and YSZ has been completed.

Data Base
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Data Base
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Data Base
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Data Base
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Data Base

• Thermophysical and mechanical properties of 
SOFC materials.

• Data generated at ORNL
• Data reported in open literature
• To be distributed to SECA Industrial Teams
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Summary

• A methodology has been developed to determine the magnitude 
of residual stresses in SOFC layered systems as a function of 
temperature by means of X-ray diffraction.

• Information necessary for determining zero-stress reference 
temperature, for verifying thermoelastic models and for 
predictions of reliability and durability.

• Work is in progress to determine the fracture toughness of 
relevant SOFC interfaces.

• A data base has been assembled containing physical and 
mechanical properties of SOFC materials. 

• All elements are in place for predicting reliability of SOFC 
assemblies.
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In collaboration with Eric Wachsman
University of Florida 


